ORIE 5355
 Lecture 8: Introduction to Algorithmic Pricing
 Nikhil Garg

Announcements

Questions from recommendations?

Algorithmic Pricing

Module Overview

- Basics of pricing and algorithmic pricing
- Pricing under uncertainty or heterogeneous valuations in population
- Demand estimation at different prices
- Challenges from practice:

Capacity constraints, dynamics, competition, selling multiple items (cannibalization)

- Extended case-study: Pricing in online marketplaces [Ride-hailing]
- Ethics, Transparency, and Bias in algorithmic pricing

User model and omniscient pricing

Simple user behavior model

- Suppose you're selling 1 type of item
- Each person i has a private valuation v_{i} for that item
- Suppose you offer the item at price p
- Person i buys the item if $v_{i} \geq p$
- Omniscient pricing: maximize revenue by setting $p_{i}=v_{i}$

Maximizing profit via machine learning

- Omniscient pricing: maximize revenue by setting $p_{i}=v_{i}$
- Challenge: we don't know valuation v_{i} for each person
- Ok, let's just use a machine learning approach!
- Create an estimate $\widehat{v_{i}}$ for value for person i using historical data
- KNN, regression, whatever
- Set price $p_{i}=\widehat{v_{i}}$
- Problem: the above approach miserably fails!

Why does the naïve method fail?

- Your estimated valuation \widehat{v}_{i} is not perfect
- Example: Suppose the true valuation $v_{i}=10$
- What is your revenue if $\widehat{v_{i}}=p=9$?

Answer: 9

- What is your revenue if $\widehat{v_{i}}=p=11$?

Answer: 0

- Under the simple behavior model, small errors in guessing valuation \widehat{v}_{i} can have huge revenue implications
- Must incorporate uncertainty in your pricing decisions!
(You also don't have great data to estimate $\widehat{v_{i}} \ldots$)

Optimal pricing with uncertainty

"Posted price mechanisms" and personalized pricing

Challenge

- There is a lot of randomness in whether someone purchases at a given price. Multiple ways to think about it:
- You have a single price p for the entire population, but people differ in in their valuations v_{i} (heterogeneity)
- You do personalized pricing p_{i}, but your estimate $\widehat{v_{i}}$ is not perfect (noise)
- Why is this a problem?
- In recommendations, we ignored noise. Why not ignore it here?
- Here, dealing with noise is crucial if we want to maximize revenue, even "in expectation"

Model

- Here, let's suppose we are posting single price p for entire population
- We have unlimited copies of the item
- Suppose we have a distribution F for the users' valuations: for each user i, valuation $v_{i} \sim F$
- If we set price p :
- Each individual with valuation $v_{i} \geq p$ purchases
- Overall, fraction $1-F(p)$ purchases

$$
\begin{aligned}
& \mathrm{d}(\mathrm{p})=1-F(p) \text { is called } \\
& \text { the "demand" at price } p
\end{aligned}
$$

Maximizing revenue

- Expected revenue at price p :
[Revenue from each sale] \times [Demand at price p]

$$
p(1-F(p))
$$

- Revenue maximizing price:

$$
\operatorname{argmax}_{p} p(1-F(p))
$$

Personalized pricing: Price differentiation via covariates

- So far: given the population valuation distribution F, we can find the price p that maximizes revenue: $\operatorname{argmax}_{p} p(1-F(p))$
- Now, suppose we have covariates x_{i} for each potential customer, and we are allowed to give show different prices to different people
- Prices by geography (neighborhood)
- Student or senior citizen discounts
- Now, given the conditional distributions $F_{p \mid X}(p \mid X=x)$, simply create a price $p(x)$ that maximizes revenue

$$
p(x) \times\left(1-F_{p \mid X}(p \mid X=x)\right)
$$

Example

- Suppose we have a binary covariate, $x_{i} \in\{0,1\}$. Population evenly split
- Valuation distributions differ
- And then purchase probabilities at each price p also differ

Example cont.

- If we don't have any capacity constraints on the item, we can simply find optimal prices independently for the two customer types
- Value of personalized pricing
- Revenue from single price: 3.81

- Revenue from separate prices: 4.72
- Things get more complicated if there are capacity constraints (next time)

Questions?

Demand (distribution) estimation

The challenge

- So far, we've talked about calculating optimal prices if we knew the demand distribution $F(p)$, or the conditional demand distributions $F_{p \mid X}(p \mid X=x)$
- We don't know these distributions! Need to learn them from data
- What does data look like? We never see valuations, just purchase decisions at historical prices p
- Assumption: we see decisions at many prices p

Naïve approach: Empirical Distribution

- Goal: estimate $\mathrm{d}(\mathrm{p})=1-F(p)$ for each p in a "reasonable range" of prices
- Naïve approach:
- Bin the historical prices offered
- In each bin, construct estimate $\overline{\mathrm{d}(\mathrm{p})}$ as the fraction of offers in that bin that were accepted

$$
\widehat{\mathrm{d}(\mathrm{p})}=\frac{\# \text { offers accepted }}{\# \text { offers }}
$$

- When estimating $F_{p \mid X}(p \mid X=x)$, simply do the same thing but for each set of covariates

Naïve method pros and cons

Pros:

- Simple to implement
- "Non-parametric" - no assumptions
- As \# of historical samples $\rightarrow \infty$, converge to truth

Cons:

- Wastes data: only use data for that given price bin and for that given covariate
- Requires many samples

Exactly the same as naïve mean estimation in polling!

Fancier methods: machine learning

- We want to estimate $\mathrm{d}(\mathrm{p}, \mathrm{x}) \stackrel{\text { def }}{=} 1-F_{p \mid X}(p \mid X=x)$
- In polling module: we replaced mean estimation with "MRP." More generally, plug in a machine learning model
- Now, can borrow information across prices and covariates
- We must make a "parametric" assumption for how prices and covariates relate to purchasing decisions
- One example: Logistic regression
- Target (Y variable) is purchase decision
- Covariates are: price offered, user covariates, interactions between price and covariates or between covariates

Demand estimation comments

- Demand estimation and forecasting is probably the most important and difficult challenge in revenue management
- Unlike most machine learning challenges, we need to estimate a function $F(p)$ [or treat price as a covariate]
- We made a substantial assumption that almost never holds in practice: that you have historical data at many different prices p

Requires experimentation!

Today's summary, \& complicating factors

Today: We want to sell an item

- Only one item
- No capacity constraints
- No competition from other sellers
- No over-time dynamics
- Allowed to explicitly give different prices to different users

Then: revenue-maximizing price(s) and demand estimation
Next time: Relax (some of) these limiting assumptions

Questions?

